Экспериментальное исследование термодинамической эффективности регулируемой вихревой трубы на природном газе
В. Бетлинский, ООО «ЭДВАЙС», Москва; М. Жидков, ЗАО Научно-производственное предприятие «Импульс», Москва; В. Овчинников, Государственное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет», Тюмень; Д. Жидков, МГТУ им. Н.Э. Баумана, Россия
Одна из немаловажных задач экономики России – разработка и реализация энергосберегающих технологий, позволяющих наиболее эффективно использовать как первичные, так и вторичные энергоресурсы. Так, в нефтегазовой промышленности имеются процессы, в которых потенциальная энергия давления углеводородных газов либо вообще теряется при расширении (газораспределительные станции и подстанции, отбор природного газа из подземных хранилищ и др.), либо утилизируется с минимальной эффективностью (установки низкотемпературной сепарации на основе эффекта Джоуля-Томпсона).
Возможные пути решения этой проблемы заключаются в следующем:
- выработка экологически чистого холода при температуре от –20 до –30 °С для замораживания и длительного хранения продуктов;
- генерация холода для технологических целей с более высоким КПД, чем дросселирование (подготовка углеводородного газа к транспорту, получение топливного газа для газопоршневых и газотурбинных электростанций).
В последнее время все большую популярность в газовой, нефтедобывающей и химической промышленности приобретают весьма простые, надежные и достаточно эффективные генераторы холода – регулируемые вихревые трубы (ВТ) Ранка-Хилша [1, 2]. От обычных ВТ они отличаются наличием механизма плавного изменения площади соплового ввода, что позволяет разработчикам установок очистки и осушки газов естественным образом включать их в схемы АСУ ТП.
Настоящая статья демонстрирует термодинамические возможности промышленной регулируемой ВТ производительностью до 52 000 нм3/ч на основе широкого спектра экспериментальных данных, полученных в течение многолетней эксплуатации ее в составе демонстрационной холодильной установки. Технологическая схема установки, смонтированной на газораспределительной станции (ГРС), приведена на рис. 1 . Она работает следующим образом.
Природный газ высокого давления поступает тангенциально в прямоугольное сопло регулируемой вихревой трубы 3, где происходит его расширение, закрутка и разделение на холодный и горячий потоки (эффект Ранка-Хилша). Холодный поток проходит теплообменники 1 и 2 типа «труба в трубе», охлаждая поступающий в них водный раствор диэтиленгликоля (ДЭГ). Горячий поток ВТ смешивается с газом на выходе из теплообменников; суммарный поток природного газа поступает в коллектор низкого давления. Охлажденный раствор ДЭГ направляется на вход насоса 4 и далее в воздухоохладитель 6. Отдав холод воздуху, циркулирующему в холодильной камере 7 с помощью вентилятора 5, хладоноситель возвращается на охлаждение в теплообменники 1, 2.
Устройство для регулирования площади соплового ввода ВТ схематично представлено на рис. 2 . Его основным элементом является клинообразная задвижка 5, которая приводится в движение штоком 2, соединенным с мембранным исполнительным механизмом (МИМ) поз. 9 (см. рис. 1). Управление механизмом МИМ осуществляется с помощью редуктора 8. Шток 2 и задвижка 5 соединены между собой шарниром 4. Термодинамические характеристики регулируемой ВТ изучались в зависимости от отношения давлений π = Рв /Рх, доли холодного потока μ = Vх /Vв и степени открытия соплового ввода с = Fс /Fс max, где Fс – текущая площадь сопла. На рис. 3, в качестве примера, приведены графики эффектов охлаждения ΔТх = (Тв – Тх) и нагрева ΔТг = (Тг – Тв) газа в функции μ при двух значениях отношения давлений (π = 5,1 и 2,0) и фиксированной степени открытия сопла с = 0,83. Здесь же приведен график удельной холодопроизво-дительности qх (qх = ΔТх μ).
В целом полученные зависимости типичны для вихревого эффекта, в том числе функция qх = f(μ), имеющая экстремум при 0,7. Однако следует отметить и осо- бенности. Так, максимальное значение ΔТх приходится на долю холодного потока, близкое к μ = 0,0. Это отличается от данных, полученных на природном газе другими авторами. Обычно этот экстремум приходится на диапазон значений μ = 0,2–0,40.
Еще одна особенность графика ΔТх = f(μ) состоит в том, что величина ΔТх при μ = 1,0 превышает эффект дросселирования ΔТдр, который должен быть в этом случае и теоретически, и практически. Причем полученное превышение ΔТх на 5–6 °С нельзя свести только к неадиабатности не заизолированной вихревой камеры ВТ.
Сразу отметим, что в указанных граничных значениях μ (μ→0,0; μ = 1,0) наблюдалась повышенная акустика ВТ, с чем, как оказалось в дальнейшем, и связаны эти аномалии. Об этом будет еще сказано ниже.
Известно, что эффективность ВТ зависит от относительной площади проходного сечения сопла с = Fс /Fтр и соотношения сторон прямоугольного соплового ввода bc/hc [3], т.е. именно от тех параметров, которые изменяются в процессе регулирования расхода газа через ВТ. Многочисленные эксперименты в области вихревого эффекта показали, что параметр bc /hc по своей значимости является величиной второго порядка по сравнению с с, поэтому в проведенном нами экспериментальном исследовании параметр с (его эквивалент – с) принят определяющим.
На рис. 4 приведены зависимости ΔТх = f( с, с) при μ = 0,3 и 0,7 (среднее значение отношения давлений πср = 5,4). Как видно из рисунка, ход кривых в диапазоне изменения с, равный 1,00–0,50, достаточно пологий. При этом отклонение ΔТх от среднего уровня значений составляет не более ± 2,5 °С. В области с = 0,33 снижение ΔТх более существенно, однако и эти показатели вполне приемлемы для процесса регулирования производительности ВТ с помощью клиновидной задвижки. Поясним это на конкретном примере.
Если регулирование производительности ВТ с постоянной геометрией соплового ввода обеспечивалось бы регулятором на входе в ВТ (рис. 5), то трехкратное снижение расхода газа (до с = 0,33) потребовало бы пропорционального уменьшения Рв, а значит и снижения отношения давлений с π = 5,4 до π = 1,9. В этом случае температурная эффективность нерегулируемой ВТ при μ = 0,7 составит ΔТх = 18 °С. Если прибавить к этой величине эффект дросселирования на регуляторе (ΔТдр = 11,0 °С), то получим суммарное снижение температуры на холодном потоке ВТ, равное ΔТх = 29,0 °С. В нашем же случае (при регулировании площади сопла) перепад температур на холодном потоке при с = 0,33, μ = 0,7 и π = 5,4 составит ΔТх = 34 °С. Разница в эффективности двух методов регулирования даже при таком значительном уменьшении расхода газа очевидна. Она будет особенно существенной при работе ВТ на газах с небольшим дроссель-эффектом.
Регулируемая ВТ непрерывно эксплуатировалась на ГРС в течение 23 мес. и подвергалась двукратной ревизии. Первая была осуществлена после 2,5 мес. работы, вторая – спустя 11 мес. И если первый визуальный осмотр выявил лишь небольшую эрозию металла в местах сопряжения деталей соплового блока, то второй показал значительный эрозивный износ. Характер повреждений – многочисленные каверны, направленные навстречу газовому потоку. Их «диаметр» и глубина составляли от 2 до 7 мм. Остальные рабочие поверхности деталей ВТ находились в удовлетворительном состоянии.
Следует отметить стабильную работу аппарата по термодинамическим показателям за 11-месячный цикл работы. Только последние два-три месяца этого цикла наблюдались повышенная вибрация аппарата и усиление уровня шума (акустики). После второй ревизии вихревая труба вновь была пущена в работу, однако из-за значительной вибрации и шума пришлось до конца 23-месячного цикла эксплуатации придерживаться пониженного расхода газа ( с = 0,33−0,17).
Особый интерес вызывало сравнение температурной эффективности ВТ в начале исследований и после длительной эксплуатации аппарата (рис. 6) с помощью зависимостей ΔТх = f(π). Приведенные графики позволяют сделать парадоксальный вывод: температурная эффективность ВТ в заключительной серии испытаний выше на 7–9 °С (при μ = 0,8) по сравнению с первоначальными экспериментами. Таким образом, можно уверенно сказать, что в условиях дополнительно генерируемой акустики и вибраций, температурная эффективность ВТ возрастает.
Каковы же причины появившихся после многомесячной работы ВТ повышенной акустики и вибраций? Первоначально, исходя из результатов второй ревизии аппарата, был сделан вывод, что основная причина связана с эрозией соплового блока. Но этот вывод оказался неверным, т.к. ситуация нисколько не изменилась с установкой вновь изготовленного, абсолютно идентичного, «неэрозивного» блока.
Температурная эффективность нового соплового блока в условиях вибрации и повышенной акустики также превышала первоначально полученные термодинамические показатели ВТ. Так, например, точки режима № 1 (табл. 1), нанесенные на поле параметров (рис. 3), наглядно демонстрируют это преимущество. Такое же преимущество наблюдается и по ΔТг. Следует отметить рекордную (за время всех испытаний регулируемой ВТ) разбежку температур холодного и горячего потоков, полученную в режиме № 1, которая составила 122 °С. В режиме № 3 также получено максимальное значение эффекта нагрева горячего потока за все время экспериментов (ΔТг = 91,5 °С).
Дальнейший поиск причин возникновения вибраций показал, что они исходили от двух механических источников, а именно: от возникших зазоров в шарнирном соединении 4 (рис. 2) и от вибрирующей втулки на конце трубы горячего потока, смонтированной по ходовой посадке и разболтавшейся в процессе эксплуатации. Таким образом, экспериментально установлено, что эффект температурного разделения газа в вихревой трубе увеличивается с появлением повышенной акустики и вибраций. Это, как показано выше, наблюдалось не только на «вибрационных» режимах после длительной эксплуатации регулируемой ВТ, но и на начальной стадии экспериментов при граничных значениях доли холодного потока (μ→0,0 и μ→1,0). И в обоих случая наблюдается увеличение эффективности ВТ.
По нашему мнению, данные факты являются подтверждением ударно-волновой концепции вихревого эффекта, высказанной авторами публикации [4]. Согласно этой концепции, первопричиной энергетического разделения газа в ВТ являются не микрохолодильные циклы турбулентных «молей» в соответствии с наиболее распространенной гипотезы взаимодействия вихрей [3], а газодинамические продольные и поперечные акустические волны, приводящие к температурному расслоению расширенного газа, как вдоль вихревой камеры, так и по ее радиусу. При наличии дополнительных источников акустических волн в ВТ, ее температурная эффективность по такой трактовке должна возрастать. Это мы и наблюдали в проведенных экспериментах на регулируемой ВТ.
Было целесообразно сопоставить термодинамические характеристики регулируемой ВТ с конструкциями других авторов. Такое сравнение было выполнено по приведенному показателю эффективности , соотносящему показатель политропы n конкретной трубы к максимально достигнутой величине nmax в ряду сравниваемых труб (методика расчета параметров n и приведена в работе [5]). Результаты выполненного сравнения при значениях μ в области максимальной холодопроизводительности ВТ представлены в табл. 2.
Как видно из табл. 2, максимальное значение политропы (nmax = 1,094) получено для регулируемой ВТ, работающей на вибрационном режиме. Но и на нормальном режиме регулируемая ВТ также имеет лучший по сравнению с конструкциями других авторов показатель эффективности. Лидирующее положение регулируемой ВТ говорит, прежде всего, об удачном исполнении узла регулирования, не вносящем негативных помех в процесс истечения высоконапорного газа в вихревую камеру.
В заключение коротко остановимся на результатах испытания рефрижераторной части демонстрационной холодильной установки. Сразу оговоримся, что основной недостаток рефрижераторной части – полное отсутствие тепловой изоляции на теплообменниках типа «труба в трубе», всех обвязывающих трубопроводах, металлической холодильной камере объемом около 30 м3 и оборудовании, примыкающем к ней. Отсюда следует вывод, что основная часть холодопроизводительности ВТ терялась в виде холодопотерь в окружающую среду. В этой связи, экспериментальные данные, полученные в таких неблагоприятных условиях, следует рассматривать в основном как качественные, показывающие при- нципиальную возможность использования холода, полученного на ГРС с помощью ВТ.
Показатели работы демонстрационной холодильной установки в летний период времени представлены в табл. 3. Для сопоставительной оценки уровня температуры, достигаемой в холодильной камере, в указанной таблице дается разность температур окружающей среды и холодильной камеры (ΔТок = То – Тк). Наиболее низкая температура в холодильной камере была достигнута в режиме № 1 (Тк = 7,5 °С), а лучший показатель по ΔТок был зарегистрирован в режиме № 2 (ΔТок = 15 °С). В остальных режимах он колебался в диапазоне ΔТок = 9,0 – 14,0 °С.
Следует отметить еще один недостаток технологической схемы апробированной холодильной установки, а именно, отсутствие рекуперации холода газового потока, выходящего из теплообменников 1 и 2 с температурой Тхт. Расчет теплового баланса установки с холодильной камерой размером 12 3 3,5 м, теплоизолированной слоем минеральной ватой толщиной 90 мм, показал, что без рекуперации можно получить Тк = 0,0 °С. Однако более низкую температуру в этом случае получить проблематично. По расчету, наличие в схеме рекуперативного теплообменника дает возможность иметь в холодильной камере Тк = –20 °С и ниже.
Таким образом, длительные испытания регулируемой вихревой трубы в составе демонстрационной холодильной установки на ГРС не только выявили ее превосходные термодинамические качества, но и позволили наметить пути совершенствования, как самого аппарата, так и холодильной установки в целом. При этом были получены неординарные экспериментальные данные по влиянию акустики и вибраций на эффективность энергетического разделения газа в вихревой трубе.
СПИСОК ЛИТЕРАТУРЫ
- Рябов А.П., Гусев А.П., Жидков М.А., Жидков Д.А., «Трехпоточные вихревые трубы в нефтедобывающей и газовой промышленности (аналитический обзор)», Нефтегазовые технологии , февраль, 2007, с. 2–7.
- Бетлинский В.Ю., Жидков М.А., Овчинников В.П., «Двухпоточные регулируемые вихревые трубы в промышленных установках очистки и осушки газов», Газовая промышленность, январь, 2008, с. 72–75.
- Меркулов А.П. «Вихревой эффект и его приме- нение в технике», М.: Машиностроение, 1969, 183 с.
- Жидков М., Гусев А., Бетлинский В., Солдатов П., Овчинников В., Рябов А., «Трехпоточная вихревая труба успешно эксплуатируется на Капитоновском», OIL&GAS JOURNAL RUSSIA, январь, 2008 (в печати).
- Жидков М.А., Комарова Г.А., Гусев А.П., Исхаков Р.М. «Взаимосвязь сепарационных и термодинамических характеристик трехпоточных вихревых труб», Химическое и нефтегазовое машиностроение, май, 2001, с. 8–11.
- Базлов М.Н., Жуков А.И., Алексеев Т.С., «Подготовка природного газа и конденсата к транспорту», М: Недра, 1968, 215 с.
- Райский Ю.Д., «Исследование работы вихревой трубы на газожидостных смесях», Газовая промышленность, июнь, 1967, с. 13–17.
- Поршенев Н.В., Ходорков И.Л., «Опыт работы универсальной конической вихревой трубы на природном газе», Сибирский промышленник, март, 2004, с. 5–8.
- Жидков М.А., «Низкотемпературная очистка газов с применение вихревого эффекта», Дис. к.т. н., М: ГИАП, 1982, 231 с.
- Меркулов А.П., Меркулов С.А., «Вихревой холодильник на базе газораспределительной подстанции», Вихревой эффект и его применение в технике, Труды шестой Всесоюзной научно-технической конференции, Самара, 1992, с. 80–82.