Газогенераторы
К.т.н. Н.И.Бохан, профессор, БГАТУ, академик Белорусской инженерной академии, к.т.н. В.Б. Ловкис, доцент, В. В. Носко, Белорусский государственный аграрный технический университет (БГАТУ), д.т.н. Н.И. Фалюшин, Институтпроблем использования природных ресурсов и экологии НАНБ
Для Республики Беларусь в последние годы характерно повышение роли местного топлива и горючих отходов в энергообеспечении страны. Это связано с тем, что в структуре себестоимости производства продукции энергетическая составляющая имеет преобладающее значение. Поэтому с учетом резкого удорожания и дефицита высококалорийных энергоносителей на основе нефти возникла необходимость создания технологий и оборудования для получения тепловой и электрической энергии на основе возобновляемых и местных видов топлива (отходы деревообработки, с/х производства, промышленные отходы и т.д.), стоимость которых в настоящее время примерно в 10-12 раз ниже стоимости нефтепродуктов.
Одним из эффективных направлений использования в энергетике твердого топлива и горючих отходов промышленного и с/х производств является, кроме прямого сжигания в топках, их предварительная переработка в горючие газы различного назначения. Получаемый в газогенераторных установках (ГГУ) газ может быть использован как топливо в энергетических установках, технологических процессах, транспортных и стационарных силовых машинах.
К настоящему времени разработано большое количество разнообразных методов газификации твердого топлива и конструкций газогенераторов в зависимости от назначения газа, качества исходного топлива и конструкций газогенераторов, вида дутья, давления и т.д.
Преимуществом генераторного газа является возможность поддержания высокотемпературных процессов, лучшие условия сжигания и управления технологическим процессом, а также то, что его можно получать из низкосортных, менее дефицитных видов твердого топлива.
В республике энергопотенциал местных видов топлива составляет (в млнту.т./год): по древесному топливу-3,1; торфу- 1,1; отходам растениеводства - 1,0-1,4; биогазу - 0,7-0,8; гидролизному лигнину - 0,05; изношенным автопокрышкам - 0,05; всего - 5,9-6,6.
Технология
Как известно, горючий газ получается в процессе термохимических превращений твердого топлива, как в условиях без доступа воздуха (полукоксование, коксование) при нагревании до 500-1000 ОС с теплотой сгорания 3000-4000 ккал/нм3, так и в процессе горения при недостатке воздуха по реакции С+О2=СО2+Q, далее СО2+С=2СО-Q, С+Н2О=СО+Н2-Q с теплотой сгорания 900-1600 ккал/нм3. На поддержание процесса газогенерации обычно расходуется 20-27% органического вещества исходного твердого топлива. Значительное влияние на выход, состав и теплоту сгорания газа оказывает вид дутья (воздушное, кислородное и т.д.), качество топлива и условия проведения процесса.
Образование горючих газов может протекать как в неподвижном слое топлива, так и «кипящем» (циркулирующем) слое. В зависимости от условий процесса получают газ заданной теплоты сгорания (800-8000 ккал/нм3) и заданного состава. Газы с теплотой сгорания свыше 1600 ккал/нм3 получают с применением паро-кислородного дутья под давлением. Теплота сгорания генераторного газа, полученного из древесины или торфа с применением паровоздушного дутья составляет 1300-1500 ккал/нм3. В энергетике и для технологических целей применяют газы с теплотой сгорания до 1600 ккал/нм3.
Существует несколько схем газогенераторных процессов: прямой, обращенный, перекрестный, с ожиженным слоем и смешанный. Прямой процесс газификации протекает в плотном слое при встречной подаче воздуха и топлива; при обращенном процессе топливо и воздух движутся в одном направлении, газ выводится через колосниковую решетку. Смешанные схемы газификации твердого топлива включают элементы прямого и обращенного процессов, что позволяет использовать топливо с размером кусков больше 20 мм. Широкое распространение получает также способ газификации в «кипящем» слое топлива.
Для выработки тепловой энергии можно применять все виды газогенераторов, однако в настоящее время предпочтение следует отдать газогенераторам Пинча, которые преобразуют в газ мелкозернистое топливо с размером частиц до 70 мм и влажностью ниже 40%. Такой тип газогенератора является базовым для установок фирмы «HERBST» (Ирландия), АО «Импет» (Беларусь), усовершенствованных газогенераторов ИПИПРЭ НАНБ серии УГВ-Т для отопления помещений, газогенераторных установок для воздушного отопления помещений ассоциации «Белавтодизель» и др. Тепловая мощность газогенераторов 30...200 кВт. Они работают в комплекте с паровыми и водогрейными котлами и воздушными теплообменниками.
Характерной особенностью газогенераторов Пинча является то, что полученный горючий газ не охлаждается, а поступает в жаровую трубу, сохраняя при этом физическое тепло и образуя факел горения с температурой 1000-1300 ОС, который контактирует с поверхностью нагрева котла или воздушным теплообменником, что позволяет проводить процесс с минимальной потерей тепла. Общий суммарный коэффициент избытка воздуха составляет 1,4-1,6, КПД газогенератора без котла - 0,90-0,93, с котлом или с теплообменником - 0,81-0,85.
Таким образом, применение газогенератора в комплекте с серийно выпускаемыми котлами на твердом топливе или воздушными теплообменниками соответствующей мощности позволяет повысить эффективность использования топлива за счет создания более высокой температуры в жаровой трубе по сравнению с температурой в слое на колосниковой решетке, что имеет также важное значение для снижения вредных выбросов при сжигании горючих отходов, а также дает возможность переводить существующее оборудование с жидкого на местное твердое топливо. Затраты на получение тепла уменьшаются в 5-8 раз по сравнению с использованием высококалорийных энергоносителей.
Устройство для отопления промышленных помещений на основе газогенератора
В Ассоциации «Белавтодизель» разработано оборудование для воздушного отопления производственных цехов сельскохозяйственных предприятий, заводов с использованием газогенераторных установок на местном топливе и горючих отходах.
Совместно с ИПЭ и ИПИПРЭ НАНБ разработаны технологии газификации соломы, льнокостры, гидролизного лигнина, отходов переработки древесины и изношенных автопокрышек с минимальным выбросом вредных веществ в атмосферу. При этом, исходя из качественных характеристик горючих отходов специалисты изменяли конструкцию газогенератора, в частности, бункера и рассекателя топлива, что позволило получить необходимые параметры процесса.
С целью обоснования экологобезопасной технологии сжигания топлива с высоким содержанием серы, в т.ч. гидролизного лигнина, выполнена работа по исследованию процессов термохимических превращений в топливе методом термического анализа на дериватографе (многофункциональная система для термического анализа, позволяющая на одной ленте получить термогравиметрическую (изменение массы образца при его нагревании), дифференциально-термическую и температурную кривые -прим. ред.).
Газогенератор состоит из корпуса, который изнутри выложен огнеупорным кирпичом. В верхней части газогенератора установлен сводчатый рассекатель с вертикальной пластиной, установленный на кронштейнах. Под рассекателем расположено отверстие для отвода газов со вставленной в него жаровой трубой, которая снабжена патрубком с крышкой для подачи и регулирования вторичного воздуха. Жаровая труба покрыта слоем огнеупорной глины. К передней стенке газогенератора прикреплена горловина, на которой установлена дверца для растопки и очистки колосниковой решетки и дверца для подачи и регулирования первичного воздуха. Для направления потока воздуха шарнирно установлена шторка, опирающаяся нижним концом на колосниковую решетку. Колосниковая решетка установлена на кулачках механизма подъема-опускания. Поворот кулачков осуществляется с помощью рычагов. Под колосниковой решеткой расположен зольник с дверцей для удаления золы. В верхней части газогенератора установлен бункер для топлива с крышкой. Наружная стенка газогенератора и жаровая труба покрыты тепловой изоляцией и обшивкой. Регулирование подачи первичного и вторичного воздуха осуществляется с помощью винтов, установленных в крышках.
Жаровая труба газогенератора вставлена в воздушный теплообменник, предназначенный для передачи тепла продуктов сгорания генераторного газа и топлива теплоносителю - воздуху. Теплообменник типа «труба в трубе» состоит из двух элементов (секций), соединенных с помощью болтов и опирающихся на диск с отверстиями, корпуса, выполненного в виде двух труб с четырьмя патрубками и дисками на торцах. Корпус теплообменника имеет патрубок с фланцем для соединения с вентилятором. В трубу секций вставлен патрубок для соединения с дымососом (дымовой трубой). Снаружи корпус теплообменника покрыт изоляцией и обшивкой. Горячие дымовые газы поступают в секции теплообменника, а затем удаляются через дымовую трубу.
Приточный воздух после нагревания (t s 45 ОС) подается в помещение с помощью воздуховодов или сосредоточенными струями. При раздаче воздуха с помощью воздуховодов создается более равномерное распределение воздуха по помещению. Однако этот способ связан с дополнительными затратами, загромождением помещений, ухудшением эстетического вида и освещенности помещений.
Разработанная система воздушного отопления производственных помещений, работающая на местных видах твердого топлива, мощностью 75 кВт, позволяет снизить стоимость тепловой энергии в 3-4 раза, повысить эффективность и надежность теплоснабжения.
Мобильные газогенераторные электростанции
Белорусским государственным аграрным техническим университетом и ассоциацией «Белавтодизель» разработана также передвижная газогенераторная электростанция (ПГГЭС), предназначенная для получения электрической энергии из местных видов топлива. Состоит из газогенераторного модуля (газогенератор, фильтры грубой и тонкой очистки, охладитель), двигателя внутреннего сгорания (ДВС), электрогенератора (ЭГ). ПГГЭС может выполняться в трех вариантах. Первый вариант предполагает размещение ПГГЭС на отдельной платформе или прицепе. Второй предусматривает размещение энергомодуля в кузове газогенераторного автомобиля. В третьем варианте используется ДВС газогенераторного автомобиля, который и вращает ротор электрогенератора. По первому и третьему вариантам созданы опытные образцы электростанций.
Испытания показали целесообразность развивать в РБ технологии и оборудование для получения силового генераторного газа, используемого для выработки электроэнергии по схемам:
• ГГУ-ДВС-ЭГ;
• ГГУ - газовая турбина - ЭГ.
В связи с этим становится актуальной проблема перевода существующих ДВС с жидкого топлива на низкокалорийный генераторный газ, а также создания специальных газовых двигателей и турбин относительно малой мощности (до 500 кВт).
Расчетный срок окупаемости описанного оборудования не превышает одного года.
Источник: http://www.rosteplo.ru