Моделирование электромагнитных процессов в ванне расплава дуговой печи постоянного тока
В настоящее время на дуговых печах постоянного тока (ДППТ) находит применение техно- логия перемешивания расплава, основанная на установке двух асимметрично расположенных подовых электродов и управлении токами, протекающими через них [1]. Взаимодействие протекающего тока с собственным магнитным полем приводит к возникновению объемных электромагнитных сил (ОЭМС), которые ведут к возникновению электровихревых течений. Изменяя конфигурацию анодов и протекающих через них токов, можно воздействовать на распределение ОЭМС, стремясь к созданию оптимальных с технологической точки зрения гидродинамических режимов. Отсюда возникает необходимость исследования электромагнитных процессов, протекающих в ванне ДППТ.
Экспериментальное определение электромагнитных параметров и ОЭМС в жидкой ванне ДППТ – задача весьма сложная, и ее решение (в самом общем виде) не представляется возможным. Однако посредством математического и компьютерного моделирования можно рассмотреть влияние основных факторов на электромагнитные процессы и указать направление поиска оптимальных технологических режимов и конструкций.
Электромагнитные параметры в ванне ДППТ не являются осесимметричными из-за наличия асимметрично расположенных подовых электродов и различия проходящих через них токов. Для нахождения электромагнитных параметров использовались упрощения и преобразования уравнений Максвелла, которые для расчета электрического поля приводили к уравнению Лапласа в цилиндрической системе координат. За начало отсчета принята поверхность ванны, причем ось Z совпадает с ее осью. Напряженность магнитного поля в произвольной точке определялась по принципу суперпозиции как векторная сумма элементарных полей (определяемых уравнением Био-Савара-Лапласа), создаваемых протекающими токами по элементам объема. По известным значениям напряженности электрического и магнитного полей рассчитывалась ОЭМС .
Для решения краевой задачи задавались граничные условия:
– в области пятна дуги – нулевой потенциал (условие Дирихле);
– на поверхности подовых электродов – нормальная составляющая плотности тока (условие Неймана);
– на свободной поверхности ванны и на керамических границах ее стенок – условие равенства нулю градиента потенциала.
Данная математическая модель легла в основу программного продукта «Электромагнитные процессы в ванне ДППТ» [2].
При разработке программы ставились следующие задачи:
– определение электромагнитных параметров как для стандартных вариантов конфигурации ванн, подовых электродов и технологических параметров, так и для любых других, задаваемых пользователем;
– разработка модулей для проведения обработки результатов расчета(-ов);
– сохранение результатов моделирования как по окончании полного цикла расчетов, так и на промежуточном этапе с возможностью последующей загрузки данных и возобновления расчетов (или проведения анализа);
– проведение автоматизированной серии расчетов при изменении какого-либо из параметров (геометрических или технологических) с фиксированным шагом на заданном диапазоне с сохранением результатов расчета каждого этапа;
– создание удобного информативного, интуитивно понятного интерфейса.
Разработка программы велась в интегрированной среде Borland Delphi 7. Созданная программа состоит из пяти основных модулей:
1) задания геометрических характеристик ванны, подовых электродов и технологических параметров, а также определения параметров сетки, накладываемой на расчетную область;
2) расчета распределения поля потенциалов;
3) расчета напряженности электрического поля;
4) расчета напряженности магнитного поля;
5) расчета распределения ОЭМС.
Работа с первым модулем – это начальный этап работы с программой. При задании геометрии ванны и подовых электродов для большей наглядности и избежания случайных ошибок при вводе происходит автоматическая прорисовка схемы ванны (вид сбоку и сверху) с указанием размеров и соблюдением пропорций. Пользователь определяет количество подовых электродов и задает величину токов, протекающих через них. Для пятна дуги предусмотрена возможность задать ее местоположение на поверхности ванны и размеры. Вся вводимая информация проверяется на корректность и допустимость задаваемой конфигурации. При обнаружении ошибки выдается предупреждающее сообщение, и дальнейшая работа программы приостанавливается до ее исправления.
Работа каждого из представленных модулей базируется на основе результатов предыдущего модуля(-ей), поэтому после указания всех необходимых параметров для работы текущего модуля предыдущие модули блокируются от изменений данных, вводимых пользователем. При принудительной разблокировке и изменении предыдущих исходных данных требуется перерасчет зависимых модулей.
Во время расчета распределения всех электромагнитных параметров происходит инфор- мирование пользователя о проценте проведения текущего этапа и об оценочном времени, оставшемся до конца расчета.
Для обработки результатов расчетов созданы библиотеки:
– табличного вывода с возможностью окрашивания диапазонов данных в различные цвета;
– построения изолиний расчетных функций по области ванны;
– векторного представления характера распределения для различных электромагнитных параметров;
– построения графика заданной зависимости.
Векторные представления и изолинии полей можно строить для любой вертикальной плоскости, проходящей через ось ванны, а также для любой горизонтальной плоскости.
Библиотека построения графика заданной зависимости обладает широкими возможностями. Она позволяет строить графики электромагнитных параметров для проведенной серии расчетов при изменении какой-либо из геометрических (например диаметра анода) или технологических (например тока через анод) величин.
На рисунке представлены результаты расчетов распределения электромагнитных параметров по области ванны для экспериментальной ДППТ. В качестве расплава использовалось олово (удельная проводимость ).
Геометрические характеристики установки: диаметр по свободной поверхности жидкого металла совпадает с диаметром подины и равен 250 мм; высота ванны – 40 мм; диаметр анодов – 15 мм; диаметр пятна дуги – 8 мм. Общий ток через ванну составлял около 1 кА.
Было проведено сопоставление результатов, полученных посредством компьютерного и физического моделирования. Установлено, что расчетные данные адекватны экспериментальным.
Разработанная программа решает поставленные задачи, ее можно применять для расчета электромагнитных параметров с целью выявления схем движения расплава и поиска наиболее оптимальной конфигурации ванны и анодов с точки зрения эффективного перемешивания расплава и минимального размытия керамической футеровки.
Список литературы
1. Моделирование электровихревых течений в ванне электродуговой печи постоянного тока. / И.М. Ячиков, О.И. Карандаева, Т.П. Ларина. – Магнитогорск: МГТУ, 2008. – 231 с.
2. Ячиков И.М., Портнова И.В., Манагаров В.Н. Электромагнитные процессы в ванне дуговой печи: Пакет программ. № ГР 50200501270, зарег. 31.08.2005.
Источник: Международный журнал "Программные продукты и системы" № 3 за 2008 год